用于自由电子激光器的铁环波荡器

褚 成 胡 煜 陆载通 施瑞根 张立芬

(中国科学院上海光学精密机械研究所)

提 要

对用于喇曼自由电子激光器的铁环波荡器进行了数值计算,其结果与实验测试获得的数据完全符合。 用这只波荡器作泵浦源,在轴向引导磁场的配合下,获得了自由电子激光辐射。

一、引 言

在我们研制的喇曼自由电子激光器中^{LLI},强流电子束是由轴向强磁场引导和约束的。 这就给使用铁环--铜环交替结构波荡器^{L2I}创造了条件。这是由于高µ值的铁磁材料会使本 来均匀分布的引导磁场发生变形,在电子束所在位置引起横向磁场分量。这种周期性分布 的横向磁场分量就可以起到泵浦电子束的波荡场的作用。对于实际采用的铁环波荡器,我 们进行了数值计算及实验测试,结果表明,在电子束所在位置(距中轴线3~7mm 处),横 向磁场峰值为引导磁场值的8%~28%,满足器件总体运转的要求。实际使用这种铁环波 荡器和引导磁场对电子束进行泵浦,获得了自由电子激光辐射。

二、理论计算

仅从磁学角度考虑,可以忽略铜环的存在。图1示出了铁环波荡器的剖面图,也显示了 理论计算进行的区域,这是基于对称性考虑而选定的。

Fig. 1 Cross-section view of the iron-ring wiggler. The shadowed block area is the region where computer calculation is made

收稿日期: 1985 年 13 月 17 日

为简化问题, 仅考虑无限长铁环波荡器中静态场的分布, 且设铁环厚度远小于计算涉及 的尺寸,其中 $\mu \rightarrow \infty$;又设较大 r 值处磁场为引导磁场值 B_0 。此时,磁场 $B = -\nabla \phi$,而标量 磁位 φ 满足 Laplace 方程:

$$\nabla^2 \varphi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \phi}{\partial r} \right) + \frac{\partial^2 \phi}{\partial z^2} = 0, \qquad (1)$$

边界条件为

$$\begin{cases} \frac{\partial \phi}{\partial r} \Big|_{r=0}^{r=0} = \frac{\partial \phi}{\partial r} \Big|_{r=L}^{r=0} = 0, \\ \frac{\partial \phi}{\partial r} \Big|_{r=0}^{r=0} = 0, \quad \frac{\partial \phi}{\partial z} \Big|_{r=L}^{r=0} = B_{0}, \\ \nabla \phi \left| r, z \right| = \nabla \phi \left| r, z+L \right|, \\ \phi \left| r_{\rightarrow \infty} = \overline{T} \mathbb{R}_{0} \right|_{r=0} \end{cases}$$

$$(2)$$

数学推导可知,在r < L/2的内部区域,磁场为

$$\begin{cases} B_r = \sum_n A_n \omega_n \sin \omega_n z J_1(\omega_n r), \\ B_n = \sum_n A_n \omega_n \cos \omega_n z J_0(\omega_n r), \end{cases}$$
(3)

式中 $\omega_n \equiv \frac{2n\pi}{L}$; A_n 为待定系数; J_1 , J_0 为 Bessel 函数。

尽管由于在r=L/2处边界条件难以确定, (3)式不能给出定量数据, 但它也指出, ① 当 r=0时, Br=0; 2 Br 与 B, 均随 z 作周期变化; 3 在 z=L/4处, Br 达最大值。 而这些均与 下面详细讨论的数值计算及实验测试相符合。

为获得定量结果,利用有限差分法求解(1)式,典型的一组计算结果示于图 2 图 2 清 楚地表明了磁场周期性的起伏及由此导致的横向(r向)磁场分量。 对于实验 使用的 尺寸 (D=L=22mm), 计算给出了不同径向位置处轴向磁场 B, 及横向磁场 B, 随 z 变化的情况, 示于图 3。可以看出,轴线上 B,的起伏幅度为 $\frac{\Delta B_z}{B_0} = 14\%$; r = 3 mm 处 B,幅度为 $\frac{\Delta B_r}{B_0}$ =8%, r = 7mm 处 B, 幅度为 $\frac{AB_r}{B_0} = 28\%$ B, 随 r 的增加而增大。

Fig. 2 Computer calculated results of the magnetic field of an iron-ring wiggler with L=DSolid line—magnetic field B; Dashed line—magnetic potential φ

(a) Axial field amplitude B_r (at r=0, vs. L/D; (b) Radial field amplitude B_r (at r=3D/22) vs. L/D

考虑到实际工作中有必要采用不同 L/D 比值的铁环波荡器,改变 L/D 值作了一系列 计算,结果示于图 4。由图 4 易见,当铁环周期 L 相对于其直径 D 缩小时,横向及轴向磁场 分量的起伏幅度都会急剧减小,这是对器件的总体运转极为不利的。也就是说,不可能指望 采用小周期值的铁环波荡器来进一步减小自由电子激光器的波长。这是一个重要的结论。

三、实验测试

用 φ0.1mm 的漆包线绕制了测试小线圈, 平均直径 φ2mm, 共 325 turn。伸入波荡器 中轴线上测得磁场微分信号 dB/dt, 经由自制的 Miller 积分器积分后在示波器上显示。 典型的波形如图 5 所示。 测得中轴线上轴向磁场值与理论计算值一起示于图 6, 可见是符合的,这就证明了上述数值计算的正确性。

四、结 论

以上计算表明,采用周期与铁环直径相等的铁环波荡器时,波荡器中横向磁场峰值可达

轴向引导磁场的 8~28%, 完全满足喇 曼 自由 电子激光器实验要求。实际总体实验中使用的 铁环波荡器示于图 7。 共 26 个周 期, 周 期长 22.5 mm, 全长 585 mm。 在该铁环波荡器及 引导磁场的联合泵浦作用 下, 使用 ϕ 6 mm 的 实心电子束及外径 ϕ 16 mm, 厚 1 mm 的 空心 电子束作为工作物质均获得了自由电子激光辐 射。 一组典型的数据为, 空心电子束能量 0.5 MeV, 束流 1 kA, 引导磁场 9 kG; 激光脉宽能

Fig. 7 The iron-ring wiggler used in experiments

量 13 mJ,脉冲半高宽 25 ns,平均功率 0.5 MW, 瞬时电子效率 0.1%, 波长约 8 mm(K。波段)。使用实心电子束时也获得了类似的电子效率^[1]。

对于王之江教授总的指导,作者深表感谢。施津川和冯炳芳同志参加了部分实验,亦致 谢意。

参考文献

[1] 诸成等;《中国激光》,1985, 12, No. 12 (Dec), 767。

[2] P. C. Effhimion et al.; Phys. Rev. (A), 1977, 16, No. 2 (Aug), 633.

An iron-ring wiggler used in a free-electron laser

CHU CHENG, HU YU, LU ZAITONG, SHI RUIGEN AND ZHANG LIFEN (Sharghai Institute of Optics and Fine Mechanics, Academia Sinica)

(Received 17 December 1985)

Abstract

We have made numerical calculation for the iron-ring wiggler used in our freeelectron laser based on stimulated Raman scattering. The theoretical results were borne out by experimental measurements. By using this wiggler together with a guiding magnetic field as the pumping source, we have obtained free-electron laser radiation.